

Tetrahedron Letters 43 (2002) 2573-2575

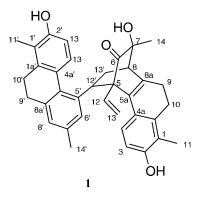
A new dimeric 9,10-dihydrophenanthrenoid from the rhizome of Juncus acutus

Marina DellaGreca,^{a,*} Antonio Fiorentino,^b Pietro Monaco,^b Lucio Previtera^a and Armando Zarrelli^a

^aDipartimento di Chimica Organica e Biochimica, Università Federico II, Complesso Universitario Monte Sant'Angelo, Via Cynthia 4, I-80126 Napoli, Italy

^bDipartimento di Scienze della Vita, II Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy

Received 30 January 2002; revised 11 February 2002; accepted 13 February 2002


Abstract—In a study of the allelochemical interaction between the wetland plant *Juncus acutus* and microalgae an unusual dimeric 9,10-dihydrophenanthrenoid has been isolated. The structure has been determined on the basis of its spectroscopic properties. © 2002 Elsevier Science Ltd. All rights reserved.

9,10-Dihydrophenanthrenoids form a rather uncommon class of metabolites originated or from stilbenic precursors¹ or by coupling of two phenylethane units.²

Many of such compounds have been isolated from the aerial part of two Juncaceae, *Juncus effusus*³ and *Juncus acutus*,⁴ and in vitro assays have evidenced their antialgal activity.⁵ This property might justify the allelopathic interaction of these plants with microalgae.

In pursuing the study of *J. acutus* we have isolated from the rhizome of the plant an unusual dimeric 9,10-dihydrophenanthrenoid, which was assigned the heptacyclic structure 1. The elemental analysis[†] and the presence of 36 carbon signals in the ¹³C NMR spectrum (Table 1) justified the molecular formula $C_{36}H_{36}O_4$. The EIMS spectrum lacked the molecular peak and showed the fragments at m/z 250 (65) and 282 (15%) attributable to a retro Diels–Alder of the cyclohexene ring.

In the IR spectrum were present hydroxyl absorptions at 3806 and 3691, and one carbonyl absorption at 1730 cm^{-1} . The UV spectrum exhibited a maximum at 280 nm.

The ¹H NMR spectrum showed in the aromatic region two coupled doublets at δ 6.77 and 6.43, two coupled doublets at δ 7.23 and 6.70, and two singlets at δ 6.99 and 6.80.

Besides three olefinic double doublets at δ 5.74, 4.86 and 4.41 belonging to a vinyl group, a double doublet at δ 4.22, two multiplets of a methylene group at δ 3.16 and 1.83, and four methyls as singlets at δ 2.22, 2.18, 1.91, and 1.43 respectively were detectable in the aliphatic region. All the remaining protons were present as overlapped signals in the 3.1–2.3 ppm range.

The ¹³C NMR spectrum and the DEPT experiment indicated the presence of a carbonyl carbon, sixteen quaternary carbons, nine methines, six methylenes and four methyls.

The rough structure was defined on the basis of COSY, HMQC and HMBC experiments (Table 1). Both the A

^{*} Corresponding author. Tel.: +39-81-674162; Fax: +39-81-674393; e-mail: dellagre@unina.it

⁺ Elemental analysis: Found: C, 81.08; H, 6.77; Calcd: C, 81.17; H, 6.81%.

С	Dept	δ ¹³ C	δ ¹ H	HMBC	С	Dept	δ ¹³ C	δ ¹ H	HMBC
1	С	122.6			1′	С	123.0		
2	С	155.9			2′	С	155.8		
3	CH	112.4	6.43 d (9.0)	C-1 C-2 C-4a	3′	CH	113.3	6.70 d (8.5)	C-1' C-2' C-4a'
4	CH	126.1	6.77 d (9.0)	C-2 C-1a C-5a	4′	CH	127.9	7.23 d (8.5)	C-2' C-1a' C-5a'
5	С	63.3			5′	С	141.7		
5	С	209.8			6′	CH	129.3	6.99 s	C-8' C-12' C-14' C-5a'
7	С	72.5			7′	С	137.1		
8	СН	51.0	2.96 brs	C-6 C-7 C-5a C-8a C-12' C-13'	8′	СН	127.1	6.80 s	C-6' C-9' C-14' C-5a'
)	CH_2	29.9	2.38 m 2.58 m	C-10 C-5a C-8a	9′	CH_2	32.5	2.42 m 2.67 m	C-10' C-5a' C-8a'
10	CH_2	26.4	2.28 m 2.98 m	C-9 C-1a C-4a C-8a	10′	CH_2	27.4	2.50 m 2.98 m	C-1' C-9' C-4a' C-8a'
1	CH ₃	12.3	2.18 s	C-1 C-2 C-1a	11′	CH ₃	12.5	2.22 s	C-1' C-2' C-1a'
2	CH	138.4	5.74 dd (12.0 18.5)	C-5 C-6 C-5a C-12'	12′	CH	39.8	4.22 dd (9.2 7.7)	C-5 C-6 C-8 C-5' C-6' C-5a C-13'
3	CH_2	117.1	4.41 dd (1.5 18.5) 4.86 dd (1.5 12.0)	C-5 C-6 C-12	13′	CH_2	36.0	1.83 m 3.16 m	C-5 C-5' C-7 C-8 C-12'
4	CH ₃	26.4	1.43 s	C-6 C-7 C-8	14′	CH ₃	21.6	1.91 s	C-6' C-7' C-8'
a	C	140.1			la'	С	139.2		
a	С	126.0			4a′	С	127.7		
5a	С	132.1			5a′	С	135.2		
Ba	С	142.1			8a′	С	143.4		

Table 1. NMR data of compound 1

s=singlet, brs=broad singlet, d=doublet, dd=doublet doublet, m=multiplet; the couplings (Hz) are reported in brackets.

and A' rings of the two 9,10-dihydrophenanthrene moieties constituting the dimer had a methyl at the 1 position and a hydroxyl at the 2 one. The protons at δ 6.43 and 6.77 were attributed to the H-3 and H-4 owing to the heterocorrelations with the C-2 carbon as well as the protons at δ 6.70 and 7.23 were attribute to H-3' and H-4' on the basis of the heterocorrelations with the C-2' carbon. The H-4 proton gave also a cross peak with the C-5a carbon and, to this carbon, were also correlated the vinylic H-12 proton at δ 5.74, and the aliphatic methines H-8 at δ 2.96 and H-12' at δ 4.22. All these protons were also correlated to the C-6 carbonyl carbon. Beside the already reported correlations, the H-12' proton was also heterocorrelated to the C-5 and C-8 carbons of the first unit and to the C-5', C-6', C-5a' and C-13' carbons of the second one. Finally the C-5a' carbon gave a cross peak with the H-4' proton.

The relative configuration of **1** was attributed on the basis of the chemical shifts of the H-13' protons and ROESY experiments (Fig. 1).

In the hypothesis of a *S* configuration at C-5 and a *R* one at C-8, the *R* configuration at C-7 was supported by the NOE interaction of the H-14 methyl with one of the H-9 protons. The 1,3 spatial interaction⁶ of the *exo* H-13' proton with the hydroxyl group at C-7 caused its downfield shift at δ 3.16.

Both the *exo* H-13' proton and the H-12' proton gave NOE with the H-4' proton thus justifying their *cis* relation. Consequently, the 9,10-dihydrophenanthrene moiety at C-12' was *endo*-oriented according to the C-12' S configuration. In conclusion, the absolute configuration of 1 should be 5S,7R,8R,12'S or the enantiomeric one.

Compound 1 may be considered to derive by the coupling of 2-hydroxy-1,7-dimethyl-5-vinyl-9,10-dihydrophenanthrene (2) with 2,6-dihydroxy-1,7-dimethyl-5-vinyl-9,10dihydrophenanthrene (3), both metabolites isolated

Figure 1. Selected NOE interactions.

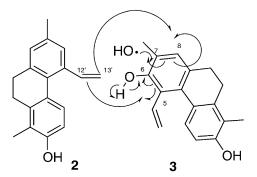


Figure 2. Coupling of 2 and 3 to give 1.

from the plant. A possible mechanism might consist (Fig. 2) in the loss of the hydrogen from the hydroxyl group at C-6 of **2** with formation of the carbonyl function and the linkage between the C-5 and the C-12' of **1**. The consequent linkage of the C-13' with the C-8 and the formal introduction of a hydroxyl radical at C-7 should complete the process.

Compound 1 was tested against *Selenastrum capricornutum*⁵ to evaluate its antialgal activity. The toxicity value, reported as IC_{50} , the inhibiting concentration that affect 50% of the population, was 10.3 μ M.

Acknowledgements

This work is dedicated to Professor Lorenzo Mangoni in occasion of his 70th birthday. NMR experiments were performed at Centro Interdipartimentale di Metodologie Chimico-fisiche of University Federico II.

References

- 1. Fritzemeier, K. H.; Kindl, H. Eur. J. Biochem. 1983, 133, 545-550.
- 2. Schütte, H. R.; Orban, U.; Mothes, K. Eur. J. Biochem. 1967, 67, 70–72.
- DellaGreca, M.; Fiorentino, A.; Monaco, P.; Pinto, G.; Pollio, A.; Previtera, L. J. Chem. Ecol. 1996, 22, 587–603.
- 4. DellaGreca, M.; Fiorentino, A.; Isidori, M.; Monaco, P.; Previtera, L.; Zarrelli, A. *Phytochemistry* **2002**, accepted.
- DellaGreca, M.; Fiorentino, A.; Isidori, M.; Zarrelli, A. Environ. Toxicol. Chem. 2001, 20, 1824–1830.
- Yates, P.; Langford, G. E. Can. J. Chem. 1981, 59, 344– 355.